SAD: Semi-Supervised Anomaly Detection on Dynamic Graphs

Sheng Tian^{1*}, Jihai Dong^{1*}, Jintang Li², Wenlong Zhao¹, Xiaolong Xu¹, Baokun Wang¹, Bowen Song¹, Changhua Meng¹, Tianyi Zhang¹ and Liang Chen²

¹Ant Group

²Sun Yat-sen University

{tiansheng.ts, dongjihai.djh}@antgroup.com, lijt55@mail2.sysu.edu.cn, {chicheng.zwl, yiyin.xxl, yike.wbk, bowen.sbw, changhua.mch, zty113091}@antgroup.com, chenliang6@mail.sysu.edu.cn

IJCAI 2023

Code&data: https://github.com/D10Andy/SAD.

Introduction

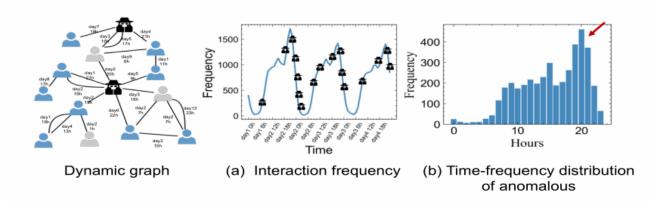


Figure 1: Statistical distribution of evolving graph streams on the MOOC dataset. **Observations**: (a) The frequency of interactions shows a clear cyclical pattern on the time axis. (b) Anomalous samples typically occurred between 8 am and 10 pm, with peaks at around 8 pm.

Existing methods are two limitations: Underutilization of unlabeled data; Lack of dynamic information mining.

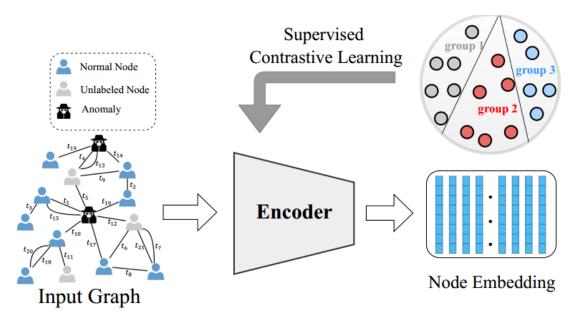
In this paper, the author presents semisupervised anomaly detection (SAD), an end-to-end framework for anomaly detection on dynamic graphs.

Method



Figure 2: The proposed semi-supervised anomaly detection framework. SAD consists of four main components: the temporal graph encoder, the anomaly detector, the time-equipped memory bank, and the supervised contrastive learning module.

Method



PRELIMINARIES:

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

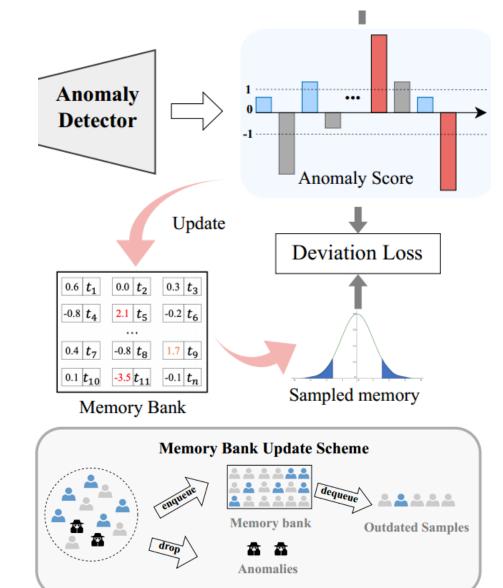
$$\mathcal{E} = \{\delta(t_1), \delta(t_2), ..., \delta(t_m)\}$$

$$\delta(t) = (v_i, v_j, t, x_{ij})$$

Deviation Networks with Memory Bank:

$$\begin{aligned} \mathbf{h}_{N_i}^{(k)}(t) &= \mathrm{AGG}^{(k)}\left(\left\{(\mathbf{h}_j^{(k-1)}(t), x_{ij}, \phi(\Delta t)) : v_j \in \mathcal{N}(v_i, t)\right\}\right), \\ \mathbf{h}_i^{(k)}(t) &= \mathrm{COMBINE}^{(k)}\left(\mathbf{h}_i^{(k-1)}(t), \mathbf{h}_{N_i}^{(k)}(t)\right), \\ \Delta t &= t - t_{ij} \end{aligned} \tag{1}$$

$$z_i(t) = \mathbf{h}_i^{(K)}(t)$$



Method

Anomaly Detector:

$$s_i(t) = f_{\theta_a}(z_i(t)) = \mathbf{W_2} \cdot \text{ReLU}(\mathbf{W_1} \cdot z_i(t) + \mathbf{b_1}) + \mathbf{b_2}, (2)$$

Memory bank:

$$m = s_i(t), \text{ if } y_i(t) = 0 \text{ or } -1$$
 (3)

$$m = (s_i(t), t), \text{ if } y_i(t) = 0 \text{ or } -1$$
 (4)

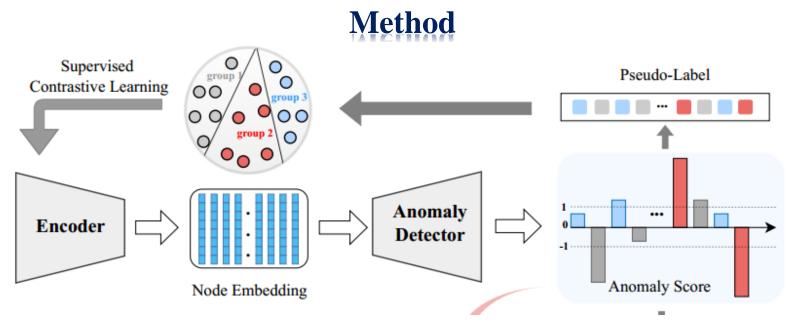
Deviation loss:

$$\mu_{r}(t) = \frac{1}{k} \sum_{i=1}^{k} w_{i}(t) \cdot r_{i}$$

$$\sigma_{r}(t) = \sqrt{\frac{\sum_{i=1}^{k} w_{i}(t) \cdot (r_{i} - \mu_{r}(t))^{2}}{k - 1}}$$

$$dev(v_{i}, t) = \frac{s_{i}(t) - \mu_{r}(t)}{\sigma_{r}(t)}.$$
(6)

$$\mathcal{L}^{dev} = (1 - y_i(t)) \cdot |dev(v_i, t)| + y_i(t) \cdot \max(0, m - |dev(v_i, t)|),$$



(8)

Contrastive Learning for Unlabeled Samples:

$$\mathcal{L}_{i}^{scl} = \frac{-1}{N-1} \sum_{j,j \neq i}^{N} 1_{\triangle d_{ij} < 1} \cdot \frac{1}{1+\triangle d_{ij}} \cdot \ln \frac{exp(z_i(t_i) \cdot z_j(t_j)/\tau)}{\sum_{k,i \neq k}^{N} exp(z_i(t_i) \cdot z_k(t_k)/\tau)}$$
$$\triangle d_{ij} = |dev(v_i, t_i) - dev(v_j, t_j)|$$

Learning procedure:

$$\underset{\theta_{enc},\theta_{ano}}{\operatorname{arg\,min}} \, \mathcal{L}^{dev}(\theta_{enc},\theta_{ano}) + \alpha \mathcal{L}^{scl}(\theta_{enc}), \tag{9}$$

$$\underset{\theta_{enc},\theta_{ano},\theta_{pro}}{\operatorname{arg\,min}} \mathcal{L}^{sup}(\theta_{pro}) + \alpha \mathcal{L}^{dev}(\theta_{enc},\theta_{ano}) + \beta \mathcal{L}^{scl}(\theta_{enc}),$$
(10)

(10)

Experiments

	Wikipedia	Reddit	Mooc	Alipay
#Nodes	9,227	10,984	7,074	3,575,301
#Edges	157,474	672,447	411,749	53,789,768
#Edge features	172	172	4	100
#Anomalies	217	366	4,066	24,979
Timespan	30 days	30 days	30 days	90 days
Pos. label meaning Chronological Split	posting banned 70%-15%-15%	editing banned 70%-15%-15%	dropping out 70%-15%-15%	fraudster 70%-15%-15%

Table 1: Statistics of datasets.

Methods	Wikipedia	Reddit	Mooc	Alipay
TGAT	83.23 ± 0.84	67.06 ± 0.69	66.88 ± 0.68	92.53 ± 0.93
TGN	84.67 ± 0.36	62.66 ± 0.85	67.07 ± 0.73	92.84 ± 0.81
Radar	82.91 ± 0.97	61.46 ± 1.27	62.14 ± 0.89	88.18 ± 1.05
DOMINANT	85.84 ± 0.63	64.66 ± 1.29	65.41 ± 0.72	91.57 ± 0.93
SemiGNN	84.65 ± 0.82	64.18 ± 0.78	64.98 ± 0.63	92.29 ± 0.85
GDN	85.12 ± 0.69	67.02 ± 0.51	66.21 ± 0.74	93.64 ± 0.79
TADDY	84.72 ± 1.01	67.95 ± 0.94	68.47 ± 0.76	93.15 ± 0.88
SAD	86.77 ± 0.24	$\textbf{68.77} \pm \textbf{0.75}$	$\textbf{69.44} \pm \textbf{0.87}$	$\textbf{94.48} \pm \textbf{0.65}$

Table 2: Overall performance of all methods in terms of AUC on dynamic node classification tasks. Means and standard deviations were computed over 10 runs.

Experiments

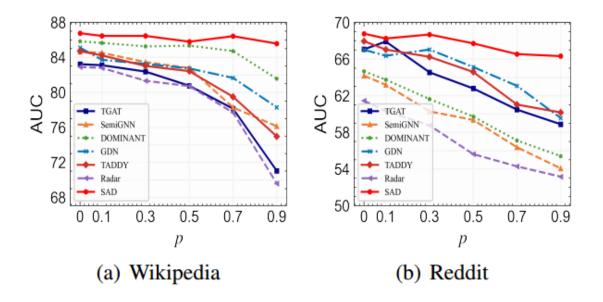


Figure 3: Dynamic node classification task results under different drop ratios p on Wikipedia and Reddit, respectively.

	Wikipedia	Reddit	Mooc
TGAT	80.76 ± 2.30	62.79 ± 3.42	64.04 ± 1.02
w/dev w/mem w/time w/scl	82.45 ± 0.64 85.20 ± 1.30 85.44 ± 0.75 85.80 ± 1.32	64.15 ± 2.93 66.96 ± 1.51 66.78 ± 1.98 67.71 ± 0.75	65.33 ± 1.67 67.25 ± 0.75 67.53 ± 0.93 67.57 ± 0.54

Table 3: Results of the ablation study on the dynamic node classification task under the label-dropping ratio of 0.5.

Experiments

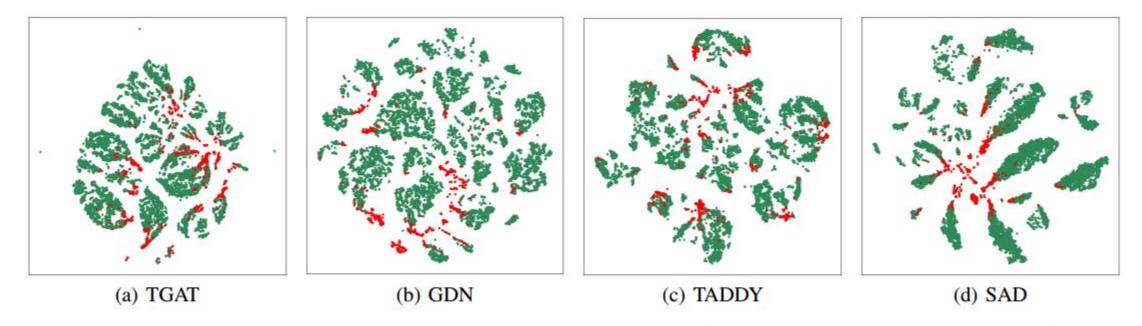


Figure 4: Visualization of the learned node embeddings w.r.t. different methods on Alipay. The red and green points represent the abnormal and normal samples, respectively.